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M. L. Kachanov UDC 537+536.2

It is well known that articulation may cause the electric and thermal conducting properties of a
medium to become anisotropic. Extensive experimental data relating to the conductivity of rock
were presented in [1], and according to these data the ambient resistance in the case of an or-
derly arrangement of cracks noticeably depends on the direction along which it is measured; an
ellipsoid of resistance anisotropy canbe constructed from the measurement results. A pronounced
correlation between the orientations of the resistivity extrema and the orientation of the crack
system is observed here. A comparison betwen the "direction rose" of the fractures and the
"direction rose" of the articulation carried out for different regions has shown that they are iden-
tical. A crack density tensor T, describing the average (with respect to a given volume) geom-
etry of the articulationhas beenintroduced [2, 3]. In the current work, it is proved that T o can

be effectively used in problems involving anisotropic electrical and thermal conductivity. The
resistivity tensor ¢ and thermal-conductivity coefficient tensor K, which characterize the anisot-
ropy of the electrical and thermal conducting properties, are expressed in terms of T,. The
structure of this relation is established; the equations presented allow us to find the form of

¢ and K if the articulation parameters are known.

_Articulation geometry in a body containing N cracks {2, 3] is entirely described by the delta-shaped field
of a bivalent symmetric tensor

N
Ty = > bn;n;8(Sy),
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where bj and n; are the opening of the crack and the unit normal to its middle surface (in general, variables
along each crack), 6(S)) is a delta function concentrated on the surface Sj, and i is the number of the crack. The
volume mean
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will be called the crack density tensor.

The crack density tensor is a purely geometric parameter, and must be somewhat modified for describing
conducting properties. In fact (in the case of not very powerful electric fields), the contribution made by the
i-th crack-to an increase in the ambient resistance is independent of crack opening by, so that we will modify
the crack density tensor T, defining it as the volume mean of the tensor field,

T; = Znini6 (8.
We find that

To=LTopv =4 | Jom8(S)aV =3 | nnas (2)
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is a bivalent symmetric tensor, giving an averaged (with respect to volume V) description of the articula-
tion, while the contribution made by the i-th crack to the mean depends on the area and orientation of its
middle surface and is independent of bi. We note that the linear invariant of T, is given by
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where $(V) is the total area of the surfaces of the banks of the cracks contained in volume V.

The dyad pn is taken outside the integration and summation signs in the inportant case of stratified
articulation (a single system of parallel two-dimensional cracks) and

To=0nn.
The tensor Ty, is spherical in the case of "random" ("unsystematic™ articulation.
It is well known that Ohm's law in an anisotropic medium has the form
J=—0-V%; 3)

where j is the current density vector, ¢ is electric field potential, and ¢ is the bivalent resistivity tensor

(it is usually assumed to be symmetric in accordance with the Onsager principle [4]); the dot denotes con~
volution with respect to a single index. The values occurring in Eq. (3) are understood to be aveages with
respect to some "elementary volume." ’

It is assumed that the medium is isotropic in terms of conducting properties, i.e., g =5yl (I isaunit
tensor). We will also assume that articulation is the sole reason for the anisotropy. Then the difference
S¢I— ¢, describing the variation of conductivity due to articulation, will be a function of the crack density
tensor,

sl —0=F(Ta). )
Let us define this function concretely. We may see that f is an isotropic tensor function. In fact, this means,
according to one definition {5], that

fA-ToA*)=A-{(Tc)- A%, )

where A is a tensor that defines an arbitrary linear orthogonal transformation and A* is the tenser con-
jugate to A. The meaning of Eq. (5) is that, as the systems of cracks undergoes "rotations" and "mirror
reflections," the current vector will undergo a corresponding transformation. This condition holds if the
material is itself isotropic. We may therefore use the Hamilton— Cayley theorem in order to represent
Eq. (4) in the form

sl ~0=cpl+c;Tg+c3 75 T (6)

where the scalar coefficients cg, ¢, and ¢, are functions of the invariantsof T,,. Clearly, the tensors sji—¢
and T, arecoaxial.

Let us assume that current attenuation due to articulation is equal to the sum of the attenuations cor-
responding to each crack (weak interactions between cracks). That is, as the articulation in the elemen-
tary volume is (arbitrarily) divided into several groups of cracks,

To =T 4T + ..
we will have
F(Ta) =T+ L)+
It therefore follows that f is linear and homogeneous, i.e., Eq. (8) reduces to the form
8pd — 0=, Tos{spTe)l, "
where sy and s, are scalar coefficients independent of T,.

We now impose the natural requirement that the ambient conductivity in directions parallel to the
cracks be the same in the case of stratified articulation as in the absence of cracks. (This requirement
holds for cracks with a small opening that do not strongly influence the cross-sectional area perpendicular
to them.) We direct the x;axis of the Cartesian coordinate system along the normal to the cracks n. From
Eq. (7) we find that
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(ej is a unit vector along the x;j axis). It is therefore clear that this requirement leads to the condition Sy=
0.

Thus, the resistivity tensor has the structure
o=sl — 5T, 8)
or (along the principal axes),
0=(so—sla1)e1el+(so——sla2)e2e2—i-(so—slas)eaes, 9)
where o are the principal values of T, that characterize the density of the articulation (area of free sur-
faces) in the e; directions. Since articulation decreases ambient conductivity, s;> 0.

Let us consider the case of importance for rock in which the articulation is formed by several sys-
tems of parallel cracks. Here the vector n is constant within each system of cracks, so that removing the
dyadnnfrom the integral signs in Eq. (2), we obtain

o=8] — 530, F;, (10)

where Fj, which characterizes the density of the articulation of the i-th system of cracks, is equal to the
free surface area of the cracks, referred to an averaged volume V (in rock mechanics, F; is sometimes
referred to as the packed rock density [6]).

For a medium with stratified articulation a, = a3=0, and
O ==(5,=5,%)e;€;-5,( €€y 1-€3€3), 1)
so that it is clear that the ambient conductivity is identical in all directions parallel to the cracks.

In the case of random articulation (a4 = @y =g the tensor is spherical and conductivity is isotropic.
Equations (9)-(11) express ¢ in terms of the articulation parameters.

It was supposed above that the crack cavities were either empty or filled with a material which was
assumed to have infinite resistance (air). In actual practice it is often the case that crack cavities are
filled with a material of finite resistance. Such filling can be taken into account within the framework of
our model in the following way.

If a filler is present, the opening b of the slits becomes a substantial factor, so that it is necessary
to avoid modifying the tensor Ty and instead assume that it is determined by Eq. (1). We will take an ef-
fective value for the crack density tensor:

—~

r,=(t- 2T,

where s_ is filler resistance and :f,oz is given by Eq. (1). When s_ < sy, the components of T, become nega-
tive. This corresponds to the natural fact that cracks containing a filler which constitutes a better con-
ductor than the "basic” material decreases the ambient resistance. (A similar situation is typical for rock
whose cracks are filled with different types of liquids.)

Heat transfer by thermal conductivity is analogous to the transfer of electrical energy. The basic
equation will be the Fourier thermali—conductivity law h=—K V7, where h is the heat flow vector, v is tem-
perature, and K is a bivalent tensor of the thermal-conductivity coefficients which, as in the case of the re-
sistivity tensor, is usually assumed fo be symmetric. If the medium is isotropic in terms of conducting
properties (K=kyl) in the absence of cracks, i.e., articulation is the sole cause of anisotropy, K=K(T,).

Repeating the arguments used in defining the function (4) word for word, we arrive at the equation
K=kOI—k1Ta, which is analogous to Eq. (8).
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